Internal Nonlinear Predictive Control of Semilinear Parabolic Equations

نویسندگان

  • Lianjun Bai
  • Daniel Coca
چکیده

This paper introduces a method for synthesizing reduced-order nonlinear model-based predictive controllers that have support in an arbitrary open subset, for semilinear parabolic equations. The predictive control law is computed based on reduced-order, nonlinear multi-step-ahead finiteelement predictors, identified directly from experimental input-output data. An advantage of this approach is that it does not require knowledge of the partial differential equation (PDE) model of the process. The proposed approach is computationally efficient and suitable for real-time implementation as it does not involve solving a complex nonlinear programming problem. The design method can deal effectively with load disturbances and noise in a similar manner to that adopted in the classical Generalized Predictive Control framework. The method is used to design and evaluate numerically a nonlinear predictive controller for a one-dimensional nonlinear parabolic equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control Problems Governed by Semilinear Parabolic Equations with Low Regularity Data

We study the existence of optimal controls for problems governed by semilinear parabolic equations. The nonlinearities in the state equation need not be monotone and the data need not be regular. In particular, the control may be any bounded Radon measure. Our examples include problems with nonlinear boundary conditions and parabolic systems.

متن کامل

An inverse problem of identifying the coefficient of semilinear parabolic equation

    In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...

متن کامل

Hamiltonian Pontryagin’s Principles for Control Problems Governed by Semilinear Parabolic Equations

In this paper we study optimal control problems governed by semilinear parabolic equations. We obtain necessary optimality conditions in the form of an exact Pontryagin’s minimum principle for distributed and boundary controls (which can be unbounded) and bounded initial controls. These optimality conditions are obtained thanks to new regularity results for linear and nonlinear parabolic equati...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Local and Global Existence of Solutions to Semilinear Parabolic Initial Value Problems

This paper is devoted to establishing local and global existence theorems for autonomous semilinear parabolic initial value problems. The local existence theorems do not require Lipchitz condition on nonlinear term. The global existence theorem is an extension of the well-known result of Fujita-Weissler for semilinear heat equations to general autonomous semilinear parabolic equations and systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011